Ana Sayfa | Matematik 2 Konu Anlatımı | POLİNOMLARDA İŞLEMLER

POLİNOMLARDA İŞLEMLER




Reklamlar



1. Toplama İşlemi

İki polinom toplanırken; dereceleri aynı olan terimlerin kat sayıları kendi aralarında toplanır, sonuç o terimin kat sayısı olarak yazılır.

2. Çıkarma İşlemi

P(x) – Q(x) = P(x) + [–Q(x)]

olduğu için, P(x) polinomundan Q(x) polinomunu çıkarmak, P(x) ile
–Q(x) i toplamaktır. Bunun için çıkarma işlemini, çıkarılacak polinomun işaretini değiştirip toplama yapmak biçiminde ele alabiliriz.

3. Çarpma İşlemi

İki polinomun çarpımı; polinomlardan birinin her teriminin diğer polinomun her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimler toplamınarak yapılır.

4. Bölme İşleminin Yapılışı

Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer şekilde yapılır. Bunun için sırasıyla aşağıdaki işlemler yapılır:

1) Bölünen ve bölen polinomlar x değişkeninin azalan kuvvetlerine göre sıralanır.

2) Bölünen polinomun soldan ilk terimi, bölen polinomun soldan ilk terimine bölünür. Çıkan sonuç, bölümün ilk terimi olarak yazılır.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek şekilde bölünen polinomun altına yazılır.

4) Bölünenin altına yazılan çarpım polinomu, bölünen polinomdan çıkarılır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi, bölen polinomun derecesinden küçük oluncaya kadar devam edilir.

Tanım

m > n olmak üzere,

der[P(x)] = m ve der[Q(x)] = n olsun.

P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) olsun.

Buna göre,

der[P(x) + Q(x)] = m,

der[P(x) – Q(x)] = m,

der[P(x) × Q(x)] = m + n,

der[B(x)] = m – n,

der[[P(x)]k] = k × der[P(x)] = k × m,

der[[P(xk)]] = k × der[P(x)] = k × m dir.

C. P(x) İN x = k İÇİN DEĞERİ

P(x) = a0 + a1 × x + a2 × x2 + … + an × xn

polinomunun x = k için değeri,

P(k) = a0 + a1 × k + a2 × k2 + … +an × kn dir.

Kural

P(x) = a0 + a1 × x + a2 × x2 + … + an × xn

polinomunda x = 1 yazılırsa,

P(1) = a0 + a1 + a2 + … + an olur.

Bu durumda P(1) in değeri P(x) polinomunun kat sayıları toplamıdır.

Sonuç

Herhangi bir polinomda x yerine 1 yazılırsa, o polinomun kat sayıları toplamı bulunur.

Örneğin, P(x + 7) polinomunun kat sayıları toplamı,

P(1 + 7) = P(8) dir.

Kural

P(x) = a0 + a1 × x + a2 × x2 + … + an × xn

polinomunda x = 0 yazılırsa,

P(0) = a0 olur.

Bu durumda P(0) ın değeri P(x) polinomunun sabit terimidir.

Sonuç

Herhangi bir polinomda x yerine 0 yazılırsa, o polinomun sabit (x ten bağımsız) terimi bulunur.

Örneğin, P(2x + 3) polinomunun sabit terimi,

P(0 + 3) = P(3) tür.



Benzer Yazılar;



<=

=>


Bu Sayfada Matematik 2 Konu Anlatımı kategorisi altında, POLİNOMLARDA İŞLEMLER yazısı bulunmaktadır. Ulaşmak istediğiniz POLİNOMLARDA İŞLEMLER değilse sitemizin arama bölümünü kullanabilirsiniz.

Web Sitemiz Sınavlara hazırlanan arkadaşlara rehberlik etmesi niyetiyle hazırlanmıştır. Amacımız öğrenci ve öğretmenlerimizin hızlı bir şekilde doğru bilgiye ulaşmasını sağlamak.
Site İçeriğimizin çok geniş olmasından dolayı, her ne kadar dikkat etmek istesekte telif haklarıyla ilgili dikkatimizden kaçan noktalar olabilir. Bu konudaki mesajlarınızı soru-telif-haklari@hotmail.com adresine iletmeniz durumunda en kısa zamanda gereken işlem yapılacaktır. Tüm öğrencilerimize başarılar dileriz. www.sorubankasi.gen.tr Site Yönetimi