Ana Sayfa | Matematik 2 Konu Anlatımı | PERMÜTASYON

PERMÜTASYON




Reklamlar



A. SAYMANIN TEMEL KURALI

1. Toplama Kuralı

Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir.

Sonlu ve ayrık iki küme A ve B olsun.

olmak üzere,

Sonuç

Ayrık iki işlemden biri m yolla diğeri n yolla yapılabiliyorsa, bu işlemlerden biri veya diğeri m + n yolla yapılabilir.

2. Çarpma Kuralı

2 tane elemandan oluşan (a1, a2) ifadesine sıralı ikili denir. Benzer biçimde

(a1, a2, a3) ifadesine sıralı üçlü

(a1, a2, a3, a4) ifadesine sıralı dörtlü

. . .

(a1, a2, a3, … , an) ifadesine sıralı n li denir.

A ve B sonlu iki küme olsun

s(A) = m

s(B) = n

olmak üzere,

s(A × B) = s(A) × s(B) = m × n dir.

A × B kümesi birinci bileşenleri A dan ikinci bileşenleri B den alınan sıralı ikililerden oluşur.

Sonuç

İki işlemden birincisi m yolla yapılabiliyorsa ve ilk işlem bu m yoldan birisiyle yapıldıktan sonra ikinci işlem n yolla yapılabiliyorsa bu iki işlem birlikte

m × n

yolla yapılabilir.

B. FAKTÖRİYEL

1 den n ye kadar olan sayma sayılarının çarpımına n faktöriyel denir ve n! biçiminde gösterilir.

Sonuç

C. PERMÜTASYON (SIRALAMA)

r ve n sayma sayısı ve r £ n olmak üzere, n elemanlı bir kümenin r elemanlı sıralı r lilerine bu kümenin r li permütasyonları denir.

n elemanlı kümenin r li permütasyonlarının sayısı :

Sonuç

1. P(n, n) = n!

2. P(n, 1) = n

1. Dairesel (Dönel) Permütasyon

n tane farklı elemanın dönel (dairesel) sıralamasına, n elemanın dönel (dairesel) sıralaması denir.

Elemanlardan biri sabit tutularak n elemanın dönel (dairesel) sıralamalarının sayısı (n – 1)! ile bulunur.

2. Tekrarlı Permütasyon

n tane nesnenin n1 tanesi 1. çeşitten, n2 tanesi 2. çeşitten, … , nr tanesi de r. çeşitten olsun.

n = n1 + n2 + … + nr olmak üzere bu n tane nesnenin n li permütasyonlarının sayısı,



Benzer Yazılar;



<=

=>


Bu Sayfada Matematik 2 Konu Anlatımı kategorisi altında, PERMÜTASYON yazısı bulunmaktadır. Ulaşmak istediğiniz PERMÜTASYON değilse sitemizin arama bölümünü kullanabilirsiniz.

Web Sitemiz Sınavlara hazırlanan arkadaşlara rehberlik etmesi niyetiyle hazırlanmıştır. Amacımız öğrenci ve öğretmenlerimizin hızlı bir şekilde doğru bilgiye ulaşmasını sağlamak.
Site İçeriğimizin çok geniş olmasından dolayı, her ne kadar dikkat etmek istesekte telif haklarıyla ilgili dikkatimizden kaçan noktalar olabilir. Bu konudaki mesajlarınızı soru-telif-haklari@hotmail.com adresine iletmeniz durumunda en kısa zamanda gereken işlem yapılacaktır. Tüm öğrencilerimize başarılar dileriz. www.sorubankasi.gen.tr Site Yönetimi